skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stanfill, Bryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract The purpose of this work is to lower the computational cost of predicting charge mobilities in organic semiconductors, which will benefit the screening of candidates for inexpensive solar power generation. We characterize efforts to minimize the number of expensive quantum chemical calculations we perform by training machines to predict electronic couplings between monomers of poly‐(3‐hexylthiophene). We test five machine learning techniques and identify random forests as the most accurate, information‐dense, and easy‐to‐implement approach for this problem, achieving mean‐absolute‐error of 0.02 [× 1.6 × 10−19J],R2= 0.986, predicting electronic couplings 390 times faster than quantum chemical calculations, and informing zero‐field hole mobilities within 5% of prior work. We discuss strategies for identifying small effective training sets. In sum, we demonstrate an example problem where machine learning techniques provide an effective reduction in computational costs while helping to understand underlying structure–property relationships in a materials system with broad applicability. 
    more » « less